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Abstract 

Beta Stable Neutron Stars in Non-Linear 
Relativistic Mean Field Models* 

J. Boguta 
Nuclear Science Division 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, CA 94720 

LBL-12584 

Properties of beta stable neutron stars are investigated in 

relativistic non-linear mean field models that correctly describe known 

bulk properties of symmetric nuclear matter. The requirement of beta 

stability can significantly affect the neutron matter equation of state 

and in turn the static properties of neutron stars. 

*This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear 

Physics of the U.S. Department of Energy under Contract W-7405-ENG-48. 
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A number of calculations predicting the static properties of cold 

neutron stars have been done using a variety of neutron matter equations 

of state. 1 Neutron matter density at the center of the neutron sta~ is 

believed to reach several times nuclear densities encountered in normal 

nuclei. To compute the properties of neutron stars using the 

Tolman-Oppenheimer-Volkov equations the neutron matter equation of state 

must be known at these large densities. This equation of state is usually 

calculated in models that violate the most elemental requirements, such as 

relativity. An exception to this criticism is the work of Chin and 

Walecka, 2 who used a particular relativistic field theory to obtain the 

equation of state at high densities. 

The idea of a neutron star was originally conceived by Landau3 

immediately after learning of neutron's discovery. He imagined a heavenly 

body made of neutrovs and held together by gravity. Strictly speaking, 

this idea cannot be correct, because of neutron's beta decay. A neutron 

star must have a certain percentage of protons and electrons. The 

requirement of beta stability in neutron stars has been neglected in the 

belief that its fulfillment would lead to a small and negligible proton 

concentration and only trivial modification of neutron matter equation of 

state. That this assumption can be incorrect for proton concentration in 

beta stable neutron matter was shown by the author. 4 It was shown that 

about twice nuclear density [kF(n) ~ 400 MeV] beta stable neutron matter 

can be 15% protons. At neutron star densities, this percentage can be 

much larger. The presence of a large percentage of protons in neutron 

matter (electrons will keep the system electrically neutral) will affect 

the equation of state. The equation of state of beta stable neutron 

matter and the corresponding modifications of the static properties of 
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neutron stars has never been investigated in detail. We find that in some 

models, the modification of the equation of state due to beta stability is 

substantial. 

A useful method to study the properties of dense nuclear matter is 

relativistic quantum field theory in the mean field approximation. The 

Lagrangian describing the nucleons w interacting with isoscalar field cr, 

isoscalar vector field w and isovector field R is taken to be 
)l )l 

~ - 1 2 ~ = -~(y a + mN)~ - -2 (a cr) - U{cr) 
)l )l )l 
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where 

F = a w - a w 
)lV )l V V )l 

G = a R - a R 
)lV )l V V )l 

and ~ is an isospin doublet of protons and neutrons, 

In the above Lagrangian mN, mv, m
0 

correspond to the nucleon, omega 

and rho meson and sigma mesons respectively, while g
5

, gv, and gr 

( 1) 

(2) 

( 3) 

are the corresponding coupling constants. The potential function U{cr) is 

taken to be a general quartic polynomial of the form 

2 4 
U{cr) 

ms 2 b 3 + Ca (4) =2a +3a 4 . 
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Such a model of nuclear matter was first considered by Schiff, 5 who 

showed that it can lead to nuclear matter saturation. The properties of 

nuclear matter for a specific choice of b and c were considered by Boguta 

and Bodmer6 and Boguta and Rafelski 7 (called the BB-model). The 

parameters were determined by fitting nuclear matter compressibility and 

surface energy together with binding energy, saturation density and 

symmetry energy. The choice of b = c leads to a model considered by 

Walecka. 8 Recently, the author has considered a model 9 (called the 

B-model) in which the values of band c were fitted to reproduce the 

energy and density behavior of the single particle potential in nuclear 

matter predicted by the variational calculations of Pandharipande and 

Friedman. 10 This model describes closed shell nuclei very we11. 11 In 

this work we investigate the effects of beta stability in the BB-model and 

the B-model. These models are of interest because both saturate symmetric 

nuclear matter at p
0 

= O.l625/fm3 with binding energy of -15.75 

MeV/particle and their low density equations of state are almost 

identical. The bulk properties of nuclear matter are equally well 

described by both models. 

For infinite nuclear matter, assuming translational and rotational 

invariance for the ground state, the equations of motion become 

(Sa) 

(Sb) 

m2R(O) - g (p (n) - p {p)] = 0 
v o r v v (5c) 

where w
0 

is the time component of the omega field and R~O) is the 

time component of the neutral rho field. The energy density € is given by 
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The pressure P at zero temperature is given by 

with 

The Fermi energies of the neutrons and protons are 

EF(n) == gvwo + grR~O) + ~kF(n)2 + m*2 

EF(p) = gvwo - grR~O) +"kF(p)2 + m*2 

(6) 

(7) 

(Sa) 

(8b) 

(9a) 

(9b) 

The requirement of beta stability implies that the reaction n + p + 
·-

e + ve has reached an equilibrium. That is 

EF(n) = EF(p) + kF(e) (10) 

where we assume that electrons are relativistic (kF(e) >>me). Charge 

neutrality requires that 

Beta stability then becomes 

( ll) 
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We have implicitly assumed that the neutrons and protons have the 

same effective mass m*. This means that we neglect the effects of the 

0++ isovector field. This approximation is justified because the scalar 

meson nonet is taken to be o2o2 quark configuration, and the isovector 

memeber has two strange quarks. 12 

For a nonrotating neutron star the equation of hydrostatic 

equilibrium is given by the Tolman-Oppenheimer-Volkov equations. They are 

dP(r) G[d(r) + P(r)/c2] [m(r) + 4nr3P(r)/c2] 
-d- = - 2 (13a) 

r [r - 2Gm(r)/c ]r 

d~(~) = 4nr2d(r) (13b) 

where P(r) is the pressure and m(r) is the amount of mass the spherically 

symmetric neutron star has up to a distance r away from the center of the 

star. Here d(r) is the energy-mass density. The relationship between the 

pressure and the particle density, or the energy-mass density, is given by 

the equation of state. Given a central energy-mass density de one 

computes the neutron star mass m(R) and the radius R by integrating the 

Tolman-Oppenheimer-Volkov equations to the point P(R) = 0. 

The pressure P as a function of energy-matter density (de) is 

obtained by solving the field equations Eq. (5a-5c) together with the beta 

stability equation Eq. (12) for given values of Cs = (gs/ms)/mN, 
3 -

Cv = (gv/mv)mN, Cr = (gr/mv)mN, b/gs = b and 
4 -c/gs = c. For the BB-model the values are Cs = 8, Cv = 3, Cr = 

5.8, o = 1.76, c = 6.82. For the B-model they are Cs = 15.6, Cv = 

12.5, cr = 4.4, o = -5.2 x lo-3, c = 2.46 x 1o-3• Both models 

saturate infinite symmetric nuclear matter at a density of p = 

O.l625/fm3 with a binding energy of -15.75 MeV/particle with a symmetry 
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energy coefficient of 35 MeV. The BB-model has nuclear compressibility of 

K = 200 MeV and the B-model has K = 280 MeV. The two models derive 

nuclear saturation by different mechanisms. While in the BB-model the 

attraction and repulsion come mainly from the scalar field, that is, the 

nuclear force is highly non-Yukawa, in the B-model repulsion comes mainly 

from the w-field with a small admixture of many body effects (a3 and 

a
4 contributions). The implication of this for beta stability is 

dramatic. 

In Fig. 1 we show the pressure as a function of baryon density for 

the BB-model and B-model fpr pure neutron matter [pv(p) = 0] and for 

beta stable neutron matter. In the BB-model the difference in the 

equation of state for beta stable and pure neutron matter is very 

significant. For the B-model the difference in the equations of state is 

relatively small. The proton concentration in beta stable neutron matter 

at about 4p
0 

in both models is 30%. 

The neutron star mass, as a function of energy-mass density is 

obtained by solving the Tolman-Oppenheimer-Volkov equations, Eq. 

(13a-13b), given the equation of state and the central density of the 

star. In Fig. 2 we show the results for B-model and BB-model for pure 

neutron matter and beta stable neutron matter. As expected, the mass of 

the star as a function of the central mass density in the B-model changes 

by about 20%, in beta stable stars. The central density at the maximum 

mass increases by about 10% since the equation of state is softer for beta 

stable neutron matter. The characteristics of neutron stars in the 

BB-model are considerably modified when the beta stability requirement is 

imposed. 
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The B-model and the BB-model were constructed to reproduce known bulk 

properties of symmetric nuclear matter at saturation. At, or below, 

nuclear saturation density, the two equations of state are almost 

identical. Thus we can conclude that the knowledge of bulk properties of 

nuclear matter at or below saturation is by far insufficient to determine 

the properties of beta stable neutron stars. Furthermore, the requirement 

of beta stability can rule out the BB-model as a reasonable model, which 

could not have been done just from the knowledge of the bulk properties of 

matter alone. The importance of beta stability cannot be prejudged 

beforehand but must be verified in each model to see whether it does not 

dramatically alter the predicted neutron star properties. 

This work was supported by the Director, Office of Energy Research, 

Division of Nuclear Physics of the Office of High Energy and Nuclear 

Physics of the U.S. Department of Energy under Contract W-7405-ENG-48. 

References 

1) For a review of neutron stars and a detailed list of references see 

V.R. Pandharipande, D. Pines and R.A. Smith, Ap. J. 208, 550 (1976) 

G. Baym and C. Pethick, Ann. Rev. Nucl. Sci. 25, 27 (1975) 

W.O. Arnett and R.L. Bowers, Ap. J. Supp. Series ]1, 415 (1977) 

2) S.A. Chin and J.D. Walecka, Phys. Lett. 52B, 24 (1974) 

3) L. Rosenfeld, in Astrophysics and Gravitation, Proc. Solvay 

Conference on Physics, 16th. Brussels: Editions de l'Universite de 

Bruxelles, p. 174 



-9-

4) J. Boguta, Remarks on the Beta Stability in Neutron Stars, LBL-11465 

(to be published) 

5) L.I. Schiff, Phys. Rev. 84, 1 (1951); 84, 10 (1951) 

6) J. Boguta and A.R. Bodmer, Nucl. Phys. A292, 413 (1977) 

7) J. Boguta and J. Rafelski, Phys. Lett. 718, 22 (1977) 

8) J.D. Walecka, Ann. Phys. 83, 491 (1974) 

9) J. 8oguta, Density Dependence of the Single Particle Potential in 

Nuclear Matter, L8L-12628 

10) B. Friendman and V.R. Pandharipande, Phys. Lett. 1008, 205 (1981) 

11) J. Boguta, Finite Nuclei in Non-Linear Relativistic Field Theory of 

Nuclear Matter, LBL-13166 

12) R.L. Jaffe, Phys. Rev. 15D, 267 (1976) 

Figure Captions 

Fig. 1. Pressure as a function of baryon density in various relativistic 

field models. 

Fig. 2. Neutron star mass as a function of mass density in various 

relativistic field models. 
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